Transversal hypergraphs to perfect matchings in bipartite graphs: Characterization and generation algorithms
نویسندگان
چکیده
A minimal blocker in a bipartite graph G is a minimal set of edges the removal of which leaves no perfect matching in G. We give an explicit characterization of the minimal blockers of a bipartite graph G. This result allows us to obtain a polynomial delay algorithm for finding all minimal blockers of a given bipartite graph. Equivalently, this gives a polynomial delay algorithm for listing the antivertices of the perfect matching polytope of G. We also give generation algorithms for other related problems, including d-factors in bipartite graphs, and perfect 2matchings in general graphs.
منابع مشابه
Finding Perfect Matchings in Bipartite Hypergraphs
Haxell’s condition [Hax95] is a natural hypergraph analog of Hall’s condition, which is a wellknown necessary and sufficient condition for a bipartite graph to admit a perfect matching. That is, when Haxell’s condition holds it forces the existence of a perfect matching in the bipartite hypergraph. Unlike in graphs, however, there is no known polynomial time algorithm to find the hypergraph per...
متن کاملAlgorithms for Generating Minimal Blockers of Perfect Matchings in Bipartite Graphs and Related Problems
A minimal blocker in a bipartite graph G is a minimal set of edges the removal of which leaves no perfect matching in G. We give a polynomial delay algorithm for finding all minimal blockers of a given bipartite graph. Equivalently, this gives a polynomial delay algorithm for listing the anti-vertices of the perfect matching polytope P (G) = {x ∈ R | Hx = e, x ≥ 0}, where H is the incidence mat...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملProperties of Stable Matchings
Stable matchings were introduced in 1962 by David Gale and Lloyd Shapley to study the college admissions problem. The seminal work of Gale and Shapley has motivated hundreds of research papers and found applications in many areas of mathematics, computer science, economics, and even medicine. This thesis studies stable matchings in graphs and hypergraphs. We begin by introducing the work of Gal...
متن کاملConstruction for bicritical graphs and k-extendable bipartite graphs
A graphG is said to be bicritical ifG−u− v has a perfect matching for every choice of a pair of points u and v. Bicritical graphs play a central role in decomposition theory of elementary graphs with respect to perfect matchings. As Plummer pointed out many times, the structure of bicritical graphs is far from completely understood. This paper presents a concise structure characterization on bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 53 شماره
صفحات -
تاریخ انتشار 2006